## Prime Number Theorem

The Prime Number Theorem states that

$$
\pi(x) \sim \frac{x}{\log x}
$$

as $x \rightarrow \infty$. Here $\pi(x)=\sum_{p \leq x} 1$, the number of primes less than or equal to $x$, and $\pi(x) \sim x / \log x$ means that

$$
\lim _{x \rightarrow \infty} \frac{\pi(x)}{x / \log x}=1
$$

We can plot $\pi(x)$ against $x / \log x$ :


The plot for $\pi(x)$ is in blue, that for $x / \log x$ in red.
Note that $\pi(x)$ is a step function (and thus not continuous) while $x / \log x$ is continuous so there will always be an error between the two. We have discussed in the notes that there is a better approximation to $\pi(x)$ given by the logarithmic integral

$$
\operatorname{li} x=\int_{2}^{x} \frac{d t}{\log t}
$$

We can plot this function against both $\pi(x)$ and $x / \log x$ :



The plot for lix is in yellow.

But even lix isn't as good an approximation as can be found. If we look in the range $100,000,000$ to $100,100,000$ we find a sizeable difference between $\pi(x)$ and lix. (lix is now in red).


A better approximation was given by Riemann as

$$
R(x)=\sum_{n=1}^{\infty} \frac{\mu(n)}{n} \operatorname{li}\left(x^{1 / n}\right) .
$$

If we plot $R(x)$ along with $\pi(x)$ and $\operatorname{li}(x)$ in $100,000,000$ to $100,100,000$ we find


If we zoom in to $100,000,000$ to $100,001,000$ we find


From all these pictures you might guess that $\pi(x)>x / \log x$ and $\pi(x)<$ lix for all $x$. Both of these statements are false, from which you should learn the lesson that you can't tell what will happen as $x \rightarrow \infty$ from behaviour for finite $x$ (even if $x$ is as large as $100,100,000$ !)

Above we have talked of the errors between $\pi(x)$ and $x / \log x$ and lix so it makes sense to look at the differences $\pi(x)-x / \log x$ and $\pi(x)-\operatorname{li} x$ :


It is $\pi(x)-x / \log x$ that has the largest error. In fact this error is comparable with $x / \log ^{2} x$ :


It is expected that the error $\pi(x)-\operatorname{li} x$ grows no faster than $C x^{1 / 2} \log x$ for some constant $C$.

